

## <u>Purpose</u>

 Increase efficiency of water use in Northern California using climate, hydrologic and decision science

## Goal and Objectives

- Demonstrate the utility of weather & climate and hydrologic forecasts for water resources management in Northern California
- Implement integrated forecast-management systems for the Northern California reservoirs using operational weather & climate forecast data
- Perform tests with actual data and with management input

#### **SPONSORS-COLLABORATORS**

#### Sponsors:

CALFED Bay Delta Authority
California Energy Commission
National Oceanic and Atmospheric Administration

#### **Collaborators:**

DWR - California Department of Water Resources

CNRFC - California-Nevada River Forecast Center

SAFCA - Sacramento Area Flood Control Agency

**USACE - U.S. Army Corps of Engineers** 

BoR - U.S. Bureau of Reclamation





## Application Area





### **Demonstration Concept**





## Integrated System Diagram



## Integrated System Diagram

8

#### Phase 2 (2004 – 05)

- Design and tests of <u>ensemble weather forecast (GFS)</u> <u>ingest component and links</u> to downscaling components
- Regional <u>validation of precipitation downscaling</u>
- Design, implementation and <u>validation of sfc temperature</u>
   <u>& snow physics modules</u>
- Validation of hydrologic forecast component for the major reservoir drainage areas
- Development and testing of an <u>integrated monthly</u> <u>simulation and planning model for the entire INFORM</u> <u>region</u>

## INFORM System Climate and Weather Data Components and Links



## GFS Driven Mean Areal Precipitation: Software Tests



Ensemble 1 (of 10)



**Ensemble 2** 



# Precipitation and Temperature Downscaling - Domain

**Test Period** 

Nov - May 1969 - 2004

NCEP Global Reanalysis Forcing



#### Precipitation and

## Temperature Downscaling Domain

**Test Period** 

Nov - May 1969 - 2004

NCEP Global Reanalysis Forcing

10 km resolution



13

### Precipitation Downscaling – Regional Validation

4.35

4.3

4.25 4.5

cbdc1: South Fork, American River - Folsom

cnbc1: Pit River at Canby - Shasta

dltc1: Sacramento River at Delta - Shasta ftcc1: Middle Fork feather at Clio - Oroville

hlec1: South Yuba River iifc1: Indian Creek - Oroville

mfac1: Middle Fork, American River - Folsom

mrmc1: Middle Fork Feather River at Merrimac - Oroville

mssc1: McCloud River - Shasta

nbbc1: North Yuba River

nfdc1: North Fork, American River - Folsom ordc1: Local Feather River at Oroville - Oroville pitc1: Pit River at Montgomery Creek - Shasta

plgc1: North Fork Feather River - Oroville pllc1: Lake Almanor drainage - Oroville



pitc1

cnbc1

#### Precipitation Downscaling – Performance Measures

#### Southwesterly 700mbar Wind @ SimPrec > 1 mm/6hrs

| BASIN | AV-O | BS STI | D-OBS | AV-SII | M STD-SIM | CC-S/O |
|-------|------|--------|-------|--------|-----------|--------|
| cbdc1 | 2.70 | 6.36   | 5.86  | 7.87   | 0.66      |        |
| cnbc1 | 0.59 | 1.24   | 1.84  | 1.72   | 0.36      |        |
| dltc1 | 3.94 | 1.85   | 7.25  | 3.11   | 0.38      |        |
| ftcc1 | 1.53 | 0.90   | 3.97  | 1.61   | 0.59      |        |
| hlec1 | 3.58 | 4.39   | 7.16  | 5.58   | 0.69      |        |
| iifc1 | 1.85 | 1.10   | 4.12  | 2.24   | 0.48      |        |
| mfac1 | 3.22 | 6.46   | 6.71  | 8.27   | 0.68      |        |
| mrmc1 | 3.64 | 3.87   | 7.15  | 5.10   | 0.62      |        |
| mssc1 | 4.05 | 1.74   | 7.56  | 2.97   | 0.40      |        |
| nbbc1 | 4.11 | 4.35   | 8.08  | 5.61   | 0.66      |        |
| nfdc1 | 3.09 | 4.55   | 6.43  | 5.92   | 0.67      |        |
| ordc1 | 4.34 | 3.58   | 8.49  | 4.92   | 0.53      |        |
| pitc1 | 1.56 | 1.15   | 3.30  | 1.53   | 0.48      |        |
| plgc1 | 3.40 | 2.75   | 6.80  | 3.90   | 0.54      |        |
| nllc1 | 2/13 | 2 32   | 5 1 3 | 3 15   | 0.56      |        |





### Precipitation Downscaling – Performance Measures

Cases with SW 700 mb Winds And Simulated Ppt > 1 mm/6hrs

| BASIN | CC-S/O |  |  |  |
|-------|--------|--|--|--|
| cbdc1 | 0.66   |  |  |  |
| cnbc1 | 0.36   |  |  |  |
| dltc1 | 0.38   |  |  |  |
| ftcc1 | 0.59   |  |  |  |
| Hlec1 | 0.69   |  |  |  |
| iifc1 | 0.48   |  |  |  |
| mfac1 | 0.68   |  |  |  |
| mrmc1 | 0.62   |  |  |  |
| mssc1 | 0.40   |  |  |  |
| nbbc1 | 0.66   |  |  |  |
| nfdc1 | 0.67   |  |  |  |
| ordc1 | 0.53   |  |  |  |
| pitc1 | 0.48   |  |  |  |
| plgc1 | 0.54   |  |  |  |
| nllc1 | 0.56   |  |  |  |





### Temperature Downscaling - Model

Ground Surface Temperature



$$H = \rho_a C_p C_{dh} V_a (T_s - T_a)$$

Temperature Downscaling – Preliminary Tests

T (C)





### Temperature Downscaling – Tests



9/15/2005

### **INFORM Region and Major Basins**



Distributed Tributary Basin System for Oroville – Example for INFORM Hydrology

Modeling



21

## Examples of Hydrologic Performance Analysis – Daily Scatterplots – <u>Box-Cox transformed flows</u>

**OROVILLE** 



### Overall Hydrology Model Performance Statistics Daily Inflow

|          | ρ    | RMSE<br>(cms) | FDAE | Water Years           |
|----------|------|---------------|------|-----------------------|
| Folsom   | 0.94 | 74.3          | 0.3  | 10/1/1960 - 9/30/1999 |
| Oroville | 0.92 | 117.9         | 0.32 | 10/1/1960 - 9/30/1997 |
| Trinity  | 0.93 | 31.2          | 0.32 | 10/1/1963 - 9/30/1999 |
| Shasta   | 0.94 | 105.2         | 0.25 | 10/1/1960 - 9/30/1992 |

## Examples of Hydrologic Performance Analysis – Time Series

**OROVILLE DAILY FLOW - CMS** 



## Examples of Hydrology Performance Analysis

Exceedance Frequency

Folsom Oroville

**Box-Cox transform** 

where  $\lambda$  is set to 0.3

Trinity Shasta

## Examples of Hydrologic Performance Analysis Monthly Climatology

Folsom

Oroville

**Trinity** 

Shasta

#### SAMPLE RELIABILITY DIAGRAMS



#### <u>MULTI-RESERVOIR – MULTI-OBJECTIVE DECISION MODEL</u>





#### MULTIOBJECTIVE RESERVOIR DECISION MODEL

| Reservoirs | Parameters         |          | Forecasting Models |                   |  |  |
|------------|--------------------|----------|--------------------|-------------------|--|--|
| Reservoirs | raiameters         | Ensemble | Deterministic      | Perfect Foresight |  |  |
|            | Inflow (cfs)       | 3,558    | 3,558              | 3,558             |  |  |
|            | Spillage (cfs)     | 188      | 353                | 161               |  |  |
| Folsom     | Energy (GWH)       | 1.89     | 1.91               | 2.02              |  |  |
|            | Max. Release (cfs) | 99,905   | 121,841            | 59,968            |  |  |
|            | Max. Damage (\$)   | 0        | 842,000,00 0       | 0                 |  |  |
|            |                    |          |                    |                   |  |  |
|            | Inflow (cfs)       | 4,992    | 4,992              | 4,992             |  |  |
|            | Spillage (cfs)     | 218      | 251                | 119               |  |  |
| Oroville   | Energy (GWH)       | 5.06     | 5.06               | 5.12              |  |  |
|            | Max. Release (cfs) | 155,057  | 156,945            | 92,563            |  |  |
|            | Max. Damage (\$)   | 0        | 0                  | 0                 |  |  |
|            |                    |          |                    |                   |  |  |
|            | Inflow (cfs)       | 8,571    | 8,571              | 8,571             |  |  |
|            | Spillage (cfs)     | 374      | 582                | 252               |  |  |
| Shasta     | Ener gy (GWH)      | 7.27     | 7.40               | 7.62              |  |  |
|            | Max. Release (cfs) | 161,532  | 161,532            | 101,338           |  |  |
|            | Max. Damage (\$)   | 0        | 0                  | 0                 |  |  |
|            |                    |          |                    |                   |  |  |
|            | Inflow (cfs)       | 1,936    | 1,936              | 1,936             |  |  |
|            | Spillage (cfs)     | 115      | 150                | 110               |  |  |
| Trinity    | Energy (GWH)       | 1.23     | 1.21               | 1.19              |  |  |
|            | Max. Release (cfs) | 72,560   | 72,560             | 61,073            |  |  |
|            | Max. Damage (\$)   | 0        | 0                  | 0                 |  |  |



#### Conclusion of Hydrologic Performance Analysis

- ➤ <u>Hydrology models performed well</u> and captured the hydrologic response with respect to timing and magnitude, and for various temporal scales
- ➤ <u>Performance similar to operational CNRFC model</u> running with the same parameters (but offers use of higher resolution input).
- ➤ Ensemble Streamflow Predictions (ESP) validated over historical horizon for all reservoir sites
- ➤ <u>Decision component w/ ESP showed improved conservation</u> without significant reduction in flood control and energy production benefits



#### <u>INFORM SYSTEM - FUTURE PLANS</u>

- ➤ Quasi-operational testing and assessment begins November 2005
- ➤ Use the INFORM structure for <u>assessing impacts of climate change</u> and increased demand on management alternatives
  - \* How can the reservoir system meet demands for conservation, flood control, downstream objectives and energy production
  - \* Scenario operations simulations for training and preparation ...